Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Mohamed Osman Awaleh,*
 Antonnella Badia and François Brisse

Département de Chimie, Université de Montréal, CP 6128, Succ. Centre-ville, Montréal, Québec, Canada H3C 3 J7

Correspondence e-mail:
moawaleh2000@yahoo.fr

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.040$
$w R$ factor $=0.106$
Data-to-parameter ratio $=16.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

trans-Dichlorobis[(phenylsulfanyl)methane- κ S]palladium(II)

The title compound, trans- $\left[\mathrm{PdCl}_{2}\left(\mathrm{PhSCH}_{2} \mathrm{SPh}\right)_{2}\right]$, crystallizes with two half-molecules in the asymmetric unit and each independent molecule lies about a crystallographic inversion center. In each molecule, one S atom of the bis(phenylsulfanyl)methane ligand is coordinated to the Pd atom while the second S atom of the same ligand is uncoordinated.

Comment

Linear bifunctional ligands are usually used as building blocks for the construction of the metal-organic framework materials (MOF) (Carlucci et al., 2002). Bis(phenylsulfanyl)alkanes can be used to propagate the coordination of a metal in order to form extended networks (Bu et al., 2002). The title compound, (I), was prepared in the course of our studies to build coordination polymers by self-assembling linear bifunctional ligands with transition metals. The molecular structure of (I) is shown in Fig. 1. In both independent molecules, the Pd atom lies on an inversion center, thus the ligands are arranged in a trans-geometry. Hence, the trans angles are exactly 180°. The coordination is slightly disorted square-planar (Table 1). The $\mathrm{Pd}-\mathrm{Cl}$ and $\mathrm{Pd}-\mathrm{S}$ distances are comparable to those of the polymorph trans- $\left[\mathrm{PdCl}_{2}\left(\mathrm{PhSCH}_{2} \mathrm{SPh}\right)_{2}\right]$, which crystallizes in the space group C2/c (Andrew et al., 1994).

(I)

Experimental

The ligand bis(phenylsulfanyl)methane, $\mathrm{PhSCH}_{2} \mathrm{SPh}$, was synthesized according to the literature method of Hartley et al. (1979). A solution of $\mathrm{PhSCH}_{2} \mathrm{SPh}(150 \mathrm{mg})$ in ethanol $(10 \mathrm{ml})$ was reacted with $\mathrm{Na}_{2}\left[\mathrm{PdCl}_{4}\right](12 \mathrm{mg})$ in ethanol $(5 \mathrm{ml})$. The mixture was stirred at room temperature for 2 h and evaporation of the solvent produced single crystals suitable for X-ray analysis.

Received 6 July 2005 Accepted 12 July 2005 Online 16 July 2005
\qquad

Crystal data

$\left[\mathrm{PdCl}_{2}\left(\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~S}_{2}\right)_{2}\right]$	$Z=2$
$M_{r}=641.99$	$D_{x}=1.626 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	$\mathrm{Cu} K \alpha$ radiation
$a=7.7798$ (1) \AA	Cell parameters from 7199
$b=11.0645$ (2) \AA	reflections
$c=15.4006$ (3) \AA	$\theta=2.9-72.7^{\circ}$
$\alpha=85.256$ (1) ${ }^{\circ}$	$\mu=10.67 \mathrm{~mm}^{-1}$
$\beta=82.988$ (1) ${ }^{\circ}$	$T=100$ (2) K
$\gamma=88.068$ (1) ${ }^{\circ}$	Block, colorless
$V=1310.88$ (4) \AA^{3}	$0.27 \times 0.11 \times 0.09 \mathrm{~mm}$
Data collection	
Bruker SMART2000 diffractometer ω scans	4749 reflections with $I>2 \sigma(I)$ $R_{\mathrm{int}}=0.037$
Absorption correction: multi-scan	$\theta_{\text {max }}=72.9^{\circ}$
(SADABS; Sheldrick, 1996)	$h=-9 \rightarrow 9$
$T_{\text {min }}=0.176, T_{\text {max }}=0.383$	$k=-13 \rightarrow 13$
15821 measured reflections	$l=-18 \rightarrow 17$
4986 independent reflections	
Refinement	
Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0753 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$	+ 1.085 P]
$w R\left(F^{2}\right)=0.106$	where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$S=1.07$	$(\Delta / \sigma)_{\text {max }}=0.001$
4986 reflections	$\Delta \rho_{\text {max }}=1.36 \mathrm{e} \AA^{-3}$
301 parameters	$\Delta \rho_{\min }=-1.29 \mathrm{e} \AA^{-3}$

Figure 1
Views of the two independent molecules of (I), showing the atomnumbering schemes. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted. The unlabeled parts of the molecules 1 and 2 are related by the symmetry $\operatorname{codes}(-x, 1-y,-z)$ and ($-x, 2-y, 1-z$), respectively.

This work was supported by the Natural Sciences and Engineering Research Council of Canada (FB). MOA thanks the Programme Canadien de Bourse de la Francophonie and the Organization Internationale de la Francophonie for a graduate scholarship.

References

Andrew, F. C., Evans, J., Levason, W. \& Webster, M. (1994). J. Chem. Soc. Dalton Trans. pp. 2835-2840.
Bruker (1997). SHELXTL (1997). Release 5.10. Bruker AXS Inc., Madison, USA.
Bruker (1999). SAINT (Release 6.06) and SMART (Release 5.059). Bruker AXS Inc., Madison, USA.
Bu, X. H., Chen, W., Hou, W. F., Du, M., Zhang, R. H. \& Brisse, F. (2002). Inorg. Chem. 41, 3477-3482.
Carlucci, L., Ciani, G., Proserpio, D. M. \& Rizzato, S. (2002). CrystEngComm, 4, 413-425.
Hartley, F. R., Murray, S. G., Levason, W., Soutter, H. E. \& McAuliffe, C. A. (1979). Inorg. Chim. Acta, 35, 265-277.

Maris, T. (2004). $U d M X$. Université de Montréal, Canada.
Sheldrick, G. M. (1996). $S A D A B S$. Bruker AXS Inc., Madison, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

